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Abstract. The superposition of independent Gaussian and Lorentzian field distributions at
an implanted muon site is shown, using Monte Carlo simulations, to result in a Voigtian
generalization of the well known dynamic Kubo–Toyabe muon spin-relaxation function from
which information on the internal field distribution within a sample can be recovered. The
physical origins of the associated pseudo-Voigtian internal field distribution are discussed in the
context of recent experimental zero-fieldµSR results from spin-fluctuating and heavy-fermion
systems.

1. Introduction

The longitudinal muon spin-relaxation (µSR) function appropriate for spin-polarized muons
implanted in a sample consisting of an ensemble of randomly oriented static (nuclear or
atomic) magnetic dipoles is well known in the extreme limits of both concentrated and dilute
dipolar systems. In the concentrated limit each orthogonal component of the magnetic field
at the muon site is represented by a Gaussian probability distribution [1] about zero and
the muon spin relaxation for a stationary muon is described by the semi-classical Gaussian
Kubo–Toyabe function [2, 3]. In the dilute limit each of the orthogonal field components is
assumed to be distributed about zero with a Lorentzian probability [4] and in this case the
resulting muon spin relaxation is given by the static Lorentzian Kubo–Toyabe function [5].
However, there are numerous reports [6–9] in the literature of the observation of muon
spin-relaxation (µSR) spectra with lineshapes which are neither purely Gaussian nor purely
Lorentzian, but which have a character lying somewhere between the two limits. In such
circumstances a ‘power Kubo–Toyabe’ function, namely

gV
z (t) = a0

[
1

3
+ 2

3
(1 − (λt)β) exp

(
− (λt)β

β

)]
(1)

is frequently invoked as a convenient analytical form through which theµSR spectra can
be parametrized. In equation (1)a0 is the initial asymmetry (ideallya0 = 0.33) andλ is the
muon spin-relaxation rate. Although the parameterβ provides a continuous interpolation
between purely Gaussian (β = 2) and purely Lorentzian (β = 1) static Kubo–Toyabe
lineshapes, there has, as yet, been no interpretation of the physical significance ofβ

itself. However, it is clear thatβ must reflect, to some extent, the nature of the internal
field distribution at the muon site. It is therefore worthwhile to consider the origins and
implications of the power Kubo–Toyabe function in more detail.

In addressing this problem we have employed conventional Monte Carlo techniques to
simulate muon spin-relaxation spectra for well defined internal field distributions for both
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stationary and mobile muons. We show that the relaxation function of equation (1) is simply
a static Voigtian form of the generalized dynamic Kubo–Toyabe function, representing muon
spin relaxation in the presence of a pseudo-Voigtian field distribution resulting from a
superposition of independent Gaussian and Lorentzian components. Moreover, we show
that analysis of the resultingµSR spectra can provide the relative Gaussian and Lorentzian
contributions to the field distribution.

2. The simulation procedure

We have approached the simulations from the perspective of a model dipolar spin system
for which the magnetic field probability distribution is specified. In this model the fate
of each muon is determined by a Monte Carlo process, intended to closely represent a
realistic longitudinal geometryµSR experiment, until a suitable number of events have been
recorded. The experimental geometry that we have employed in the simulation corresponds
to that of the MuSR spectrometer at the ISIS pulsed muon source at the Rutherford Appleton
Laboratory [10]: spin-polarized muons are implanted within a sample at timet = 0,
and the decay positrons, emitted preferentially along the final muon spin direction with
an asymmetry of approximately 0.33, are collected and time stamped in detectors in the
forward (+z-) and backward (−z-) directions. Each implanted muon is randomly assigned
a lifetime tl defined by the exponential decay probability distribution, exp(−t/τµ), where
τµ (=2.19 µs) is the muon lifetime. During the lifetime of the muon its spin, initially
polarized along the+z-direction, undergoes Larmor precession about its local magnetic
field. If the muon is stationary, then the muon experiences a unique field for its entire
lifetime and it is therefore only necessary to monitor thez-component of the muon spin
to enable the time evolution of the asymmetry to be calculated. If the muon is diffusing,
however, in accordance with the strong-collision model, the muon’s residence time,τr , at
a particular site is randomly selected with the exponential probability , e−νt , whereν is the
muon diffusion rate. After allowing the muon spin components to evolve for the timeτr

in this field, a further residence time and magnetic field, representative of a new site, are
randomly generated. This process is repeated until the muon decays.

At the instant of decay the probability of detecting the emerging positron in both the
forward (F) and the backward (B) detectors is calculated according to the muon decay
anisotropy function, incorporating the solid angle subtended by the detectors at the sample
position. Each muon decay thus contributes to both the forward and backward detectors as a
weighted event and in this manner the numbers of events occurring at timet in each detector
are recorded. The muon spin-asymmetry plot may then be constructed in the standard way
by taking the ratio

Gz(t) = F(t) − B(t)

F (t) + B(t)
(2)

whereF(t) and B(t) are the positron count rates in the forward and backward detectors
respectively, andGz(t) is the longitudinal muon spin-relaxation function, which, att = 0,
extrapolates toa0 = 0.33.

3. Stationary muons

Muon spin-relaxation spectra have been simulated for a superposition of Gaussian and
Lorentzian field distributions at the muon site. Thus, each orthogonal component,Hi ,
wherei = x, y, z, of the magnetic field at the muon site is obtained by a simple addition of
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Figure 1. Muon spin-relaxation spectra resulting from a superposition of Gaussian and Lorentz-
ian static field distributions.1 is the width of the Gaussian component andA is the width of
the Lorentzian component.

two independent contributions, one randomly selected according to a Gaussian probability
distribution,P G(Hi),

P G(Hi) = 1√
2π1

exp

(
− H 2

i

212

)
(3)

and the other randomly selected according to a Lorentzian probability distribution,P L(Hi),

P L(Hi) = γµ

π

α

(α2 + γ 2
µH 2

i )
. (4)

The vector sum of these components then determines the magnitude and direction of the
resultant magnetic field at that particular muon site. By adjusting the ratio of the Gaussian
distribution width,1, to the Lorentzian distribution width,α, the resultant distribution varies
between the Gaussian and Lorentzian limits.

When each orthogonal field component is distributed about zero as a Gaussian of width
1, the magnitude of the resultant field is simply a Maxwellian distribution of width1

and it is this width which appears in the Gaussian Kubo–Toyabe function in the standard
form as σ = γµ1, where σ is the relaxation rate andγµ is the gyromagnetic ratio of
the muon. However, when each orthogonal field component is distributed about zero as
a Lorentzian of widthα, the magnitude of the resultant field is given by the Lorentzian
equivalent of the Maxwellian distribution (see equation (4)) but in this case with a width
A = α/〈K〉. For a system of dilute dipoles the factor〈K〉 results from the angular average
over the anisotropic factor in the dipolar field expression. We have determined numerically,
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from the simulations, that〈K〉 takes the value 0.6919(11). This value can be compared
with a value of 0.6909 obtained from a previous numerical treatment [11]. We emphasize
here that it is the widthA, not as commonly believedα, which appears in the Lorentzian
Kubo–Toyabe function

gL
z (t) = a0

[
1

3
+ 2

3
(1 − at) exp(−at)

]
(5)

in the standard forma = γµA.

Table 1. A summary of the least-squares fits ofgV
z (t) (equation (1)) to the simulated relaxation

spectra shown in figure 1.

1 (mT) A (mT) a0f it λf it (MHz) βf it

0.1 0.01 0.3331(3) 0.0881(3) 1.780(9)
0.1 0.02 0.3317(4) 0.0917(3) 1.647(8)
0.1 0.05 0.3294(4) 0.1063(3) 1.411(7)
0.1 0.1 0.3292(6) 0.1354(4) 1.219(6)
0.1 0.2 0.3290(6) 0.2080(6) 1.103(5)
0.1 0.5 0.3292(6) 0.451(1) 1.028(4)
0.1 1.0 0.3327(6) 0.886(3) 0.992(4)
0.01 0.1 0.3338(6) 0.0878(3) 0.996(5)
0.02 0.1 0.3335(6) 0.0903(3) 1.009(5)
0.05 0.1 0.3322(6) 0.1013(3) 1.063(5)
0.1 0.1 0.3293(5) 0.1354(4) 1.217(6)
0.2 0.1 0.3264(5) 0.2163(5) 1.477(6)
0.5 0.1 0.3274(5) 0.4700(8) 1.769(6)
1.0 0.1 0.3292(5) 0.897(2) 1.881(6)

Figure 1(a) shows a selection of simulations ofµSR spectra resulting from a typical
Gaussian field distribution width of1 = 0.1 mT summed with a range of Lorentzian field
distribution widths varying fromA = 0.11 to A = 101. Simulations for the corresponding
range of Gaussian distribution widths summed with a Lorentzian distribution width of
A = 0.1 mT are shown in figure 1(b). The simulated spectra have been analysed by
least-squares fitting the power Kubo–Toyabe function of equation (1). As can be seen, all
of the spectra in figures 1(a) and 1(b) are found to be accurately described bygV

z (t) of
equation (1). The parameters obtained from the least-squares fits are summarized in table 1.

We find that the distribution of the magnitude of the magnetic field at the muon site, in
all of the above simulations, is accurately described by a three-dimensional equivalent of
the pseudo-Voigtian lineshape,P V (H),

P V (H) = A0

[
(1 − η)

(
2

π

)1/2

03/2H 2 exp

(
− H 2

202

)
+ η

(
4

π

)
0H 2

(02 + H 2)
2

]
. (6)

Figure 2 shows several least-squares fits ofP V (H) of equation (6) to the field
distributions obtained from the simulations of figure 1(a). The parameters obtained from
these fits, together with those obtained from the field distributions extracted from the
simulations shown in figure 1(b), are summarized in table 2.

As each orthogonal magnetic field component is derived from a simple superposition
of fields selected from pure Lorentzian and pure Gaussian distribution functions, the
general form of the three-dimensional pseudo-Voigtian function given by equation (6) for
the magnitude of the field distribution is entirely justified: equation (6) is essentially a
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Figure 2. Probability distributions,P V (H), for the magnitude of the magnetic field at the muon
site obtained from the simulations shown in figure 1(a). The data points are obtained from the
numerical simulations, while the solid lines represent least-squares fits of equation (6) to the
data.

Table 2. The results of a least-squares fit of the pseudo-Voigtian field distribution,P V (H), to
the field profiles at the muon site obtained from the simulations shown in figure 1.

1 (mT) A (mT) 0 (mT) γµ0 (MHz) λ (MHz) η β β + η

0.1 0.01 0.104 39(8) 0.0889(1) 0.0881(3) 0.115(1) 1.780(9) 1.895(9)
0.1 0.02 0.109 69(8) 0.0934(1) 0.0917(3) 0.217(1) 1.647(8) 1.864(8)
0.1 0.05 0.1274(1) 0.1085(1) 0.1063(3) 0.458(2) 1.411(7) 1.869(7)
0.1 0.1 0.1611(2) 0.1372(2) 0.1354(4) 0.691(2) 1.219(6) 1.910(6)
0.1 0.2 0.2410(4) 0.2052(3) 0.2080(6) 0.885(2) 1.103(5) 1.988(5)
0.1 0.5 0.5153(9) 0.439(1) 0.451(1) 0.993(2) 1.028(4) 2.021(4)
0.1 1.0 1.001(2) 0.852(2) 0.886(3) 1.015(2) 0.992(4) 2.007(4)
0.01 0.1 0.0989(2) 0.0842(2) 0.0878(3) 0.997(2) 0.996(5) 1.993(5)
0.02 0.1 0.1031(2) 0.0878(2) 0.0903(3) 0.994(2) 1.009(5) 2.003(5)
0.05 0.1 0.1202(2) 0.1023(2) 0.1013(3) 0.882(2) 1.063(5) 1.945(5)
0.1 0.1 0.160 47(6) 0.1366(1) 0.1354(4) 0.691(1) 1.217(6) 1.908(6)
0.2 0.1 0.2551(3) 0.2172(3) 0.2163(5) 0.468(2) 1.477(6) 1.945(6)
0.5 0.1 0.547 90(4) 0.466(1) 0.4700(8) 0.233(2) 1.769(6) 2.002(6)
1.0 0.1 1.0455(8) 0.890(1) 0.897(2) 0.083(2) 1.881(6) 1.964(6)

superposition of the Maxwellian and the equivalent Lorentzian field distributions. However,
the use of only a single parameter,0, to define the overall width of this distribution, rather
than using a combination of the independent Gaussian and Lorentzian distribution widths,
is perhaps less justified. Nevertheless, with the introduction of a mixing parameter,η, the
form of the pseudo-Voigtian field distribution function is clearly consistent with the observed
field distributions.

The muon spin-relaxation spectrum is determined by the projection of the muon
spin Larmor precessional motion along the longitudinal (+z-) direction averaged over
the magnetic field distribution. It is the width of this distribution that determines the
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Figure 3. The relationship betweenβ and the ratio of the Gaussian,1, to Lorentzian,A, field
distribution widths obtained from the numerical simulations shown in figure 1.

relaxation rate. The advantage, therefore, of characterizing the width of the pseudo-Voigtian
distribution by a single parameter is that this parameter may then be used to determine the
muon spin-relaxation rate in the same way that the parameters which define the Gaussian and
Lorentzian field widths determine the relaxation rate in the pure Gaussian and Lorentzian
static Kubo–Toyabe functions. That this is the case, for1/A spanning two orders of
magnitude, is immediately apparent from an inspection of the values ofγµ0 in table 2.
These values are in excellent agreement with the values ofλ listed in table 2 which have
been extracted through least-squares fits of the power Kubo–Toyabe function (1) to the
simulated spectra of figure 1. We also show, in figure 3, that the value ofβ obtained
from these least-squares fits is adequately represented for most of the range of1/A by the
relationship

β = 2 − exp

(
−k

1

A

)
(7)

wherek is found to be 0.3035 and, as shown in table 2,η = 2 − β. Clearly the power
Kubo–Toyabe function given in equation (1) can aptly be named a Voigtian Kubo–Toyabe
function.

4. Diffusing muons

If the muon is rapidly diffusing, then we expect the motional narrowing process to affect
the Gaussian component of the magnetic field but not the Lorentzian component. When
the muon diffusion rate,ν, is sufficiently fast, such thatν � a, then the relaxation arising
from a Lorentzian field distribution becomes independent of the diffusion rate and is given
simply by the quasistatic function e−4at/3. The modulation of the Gaussian field component
may then be considered as a distinct event and the total relaxation is thus derived from
two concurrently occurring independent statistical processes. Under these circumstances
the polarization at any time,t , is the product of the two individual polarizations at that
time.

If the muon is slowly diffusing, however, such thatν ≈ a, then the relaxation arising
from a Lorentzian field distribution is not independent of the diffusion rate. To obtain an
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Figure 4. The dynamic Voigtian Kubo–Toyabe muon spin-relaxation function resulting from a
superposition of Gaussian and Lorentzian static field distributions modulated according to the
strong-collision model (see the text). Top panel:R = 0.2 and 16 β 6 2; bottom panel:R = 2
and 16 β 6 2.

accurate description of the muon relaxation function in this situation the strong-collision
model should be applied to the Voigtian Kubo–Toyabe function. The depolarization,GV

z (t),
is then given by

GV
z (t) = gV

z (t) + ν

∫ t

0
GV

z (t − t ′)gV
z (t ′) d′t (8)

wheregV
z (t) is the static Voigtian Kubo–Toyabe function of equation (1).GV

z (t) is shown
in figure 4 as a function of the dimensionless parametersR andT , whereR = ν/γµ0 and
T = γµ0t , for R = 0.2 andR = 2 with 1 6 β 6 2.

Figure 5 shows a set of simulations which cover a range of slow muon diffusion rates
for three particular ratios of1/A. The first set, (a), has1 = 0.1 mT andA = 0.2 mT and
is close to the Lorentzian limit. The second set, (b), has1 = 0.2 mT andA = 0.2 mT and
is intermediate in character, while the third set, (c), has1 = 0.5 mT (5 G) andA = 0.1 mT
and is close to the Gaussian limit. The solid lines in figure 5 are least-squares fits of
the numerically evaluated dynamic Voigtian Kubo–Toyabe function of equation (8) to the
simulated data. The parameters obtained from these fits are summarized in table 3, together
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Figure 5. Muon spin-relaxation spectra for a slowly diffusing muon in the presence of both
Gaussian,1, and Lorentzian,A, static field distributions. The spectra are characterized by
R = ν/γµ0 and β, where0 is the width of the resultant Voigtian field distribution andβ
defines the extent to which this is either Gaussian or Lorentzian (see the text). The data points
are the results of the numerical simulations, while the solid lines are least-squares fits of the
dynamic Voigtian Kubo–Toyabe function, given by equation (8).
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Table 3. A summary of the least-squares fits of the dynamic Voigtian Kubo–Toyabe function,
GV

z (t), to the simulated spectra shown in figure 5. (a)1 = 0.1 mT, A = 0.2 mT, βexp = 1.10,
γµ0exp = 0.208; (b)1 = 0.2 mT,A = 0.2 mT,βexp = 1.22,γµ0exp = 0.271; (c)1 = 0.5 mT,
A = 0.1 mT, βexp = 1.77, γµ0exp = 0.470.

ν (MHz) Rexp a0f it γµ0f it (MHz) νf it (MHz) β

(a) 0.020 80 0.1 0.3300(6) 0.2076(7) 0.0449(2) 1.100(3)
0.041 60 0.2 0.3295(6) 0.2103(6) 0.0492(2) 1.101(4)
0.1040 0.5 0.3301(5) 0.2100(7) 0.0998(1) 1.100(3)
0.2080 1 0.3295(6) 0.2118(6) 0.209(1) 1.100(5)
0.4160 2 0.3314(6) 0.2114(6) 0.3263(3) 1.099(4)

(b) 0.027 08 0.1 0.3249(6) 0.2730(7) 0.0322(2) 1.285(6)
0.054 16 0.2 0.3254(6) 0.2750(6) 0.0706(5) 1.300(6)
0.1354 0.5 0.3279(6) 0.2737(6) 0.1380(1) 1.250(6)
0.2708 1 0.3273(5) 0.2816(7) 0.310(3) 1.250(7)
0.5416 2 0.3289(6) 0.2790(7) 0.4255(3) 1.250(6)

(c) 0.0470 0.1 0.3261(6) 0.4698(9) 0.0398(2) 1.807(8)
0.0940 0.2 0.3291(5) 0.4702(8) 0.0859(3) 1.736(7)
0.2350 0.5 0.3302(5) 0.4715(8) 0.2259(2) 1.784(9)
0.4700 1 0.3289(5) 0.4702(8) 0.4871(2) 1.798(8)
0.9400 2 0.3295(5) 0.4770(8) 1.004(1) 1.704(8)

with the expected values of bothβ and γµ0 obtained from the fits of the corresponding
static functions given in table 1. As can be seen from this table, despite the similarities of
the spectra, the extracted parameters agree remarkably well with the expected values.

5. Conclusions

With the aid of Monte Carlo simulation techniques we have examined the longitudinalµSR
spectra resulting from a pseudo-Voigtian distribution of the magnetic fields at the muon site
for both stationary and a slowly diffusing muons. It has been found that, for a stationary
muon, the static Voigtian Kubo–Toyabe functiongV

z (t), given by equation (1), accurately
describes these spectra for field distributions spanning the entire range between the Gaussian
and Lorentzian limits. In addition, we have demonstrated that the relaxation rate of theµSR
spectrum is determined solely by the width of the Voigtian field distribution. We have also
established a relationship (equation (7)) between the relative widths of the Gaussian and
Lorentzian components of the pseudo-Voigtian distribution and the mixing parameter,η,
and the variable power,β, appearing ingV

z (t).
In the case of a diffusing muon the application of the strong-collision model to the

Voigtian Kubo–Toyabe model is appropriate. Within the framework of this model we
can successfully recover the expected parameters (diffusion rate, relaxation rate etc) from
simulations of slow to moderate muon diffusion rates and for a range of field distributions.

It is interesting to note that Voigtian Kubo–Toyabe muon spin relaxation has recently
been observed in the Zr-substituted spin-density-wave-like weak itinerant electron magnet
NbFe2 [7], and in the Y-substituted heavy-fermion compounds UPd3 [8] and URu2Si2 [9].
A framework for interpreting the zero-fieldµSR spectra from these systems is provided by
the current analysis. For example pure URu2Si2 develops antiferromagnetic order of a spin-
density-wave character, with a very small ordered moment atTN = 17.5 K. Small additions
of Y leaveTN essentially unchanged, but produce locally somewhat better defined moments
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which can behave as Kondo impurities. As temperature decreases, we therefore expect
the muons implanted in U1−xYxRu2Si2 to sense an increasingly pronounced Lorentzian
field distribution, related to the condensation of the dilute magnetic impurities, against an
otherwise Gaussian field distribution arising from the local nuclear dipole fields. Indeed,
on cooling, theµSR spectra obtained from U1−xYxRu2Si2 show the Voigtian Kubo–Toyabe
form, with the exponentβ decreasing fromβ = 2 at high temperatures toβ = 1 at 5 K [9].
The behaviour of NbFe2 and UPd4 can similarly be discussed in terms of an essentially
inhomogeneous moment condensation from a spin-fluctuating matrix.

In general the Voigtian Kubo–Toyabe function might be expected to provide a reasonable
description of the muon spin relaxation in any matrix within which dilute atomic or magnetic
cluster dipoles are embedded in a concentrated matrix of nuclear dipoles, or perhaps in any
situation wherein a pseudo-Voigtian internal field distribution arises naturally (for example
a dipolar system which is intermediate between the dilute and concentrated limits).
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